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Resumen

El crecimiento del cómputo distribuido y la inteligencia arti�cial plantea un reto urgen-
te de sostenibilidad energética. Los sistemas actuales ejecutan grandes volúmenes de tareas
cuyo coste depende de la e�ciencia de sus con�guraciones y del uso de recursos. Este tra-
bajo presenta una línea de investigación orientada a desarrollar un marco de optimización
continua que equilibre rendimiento y consumo energético mediante transferencia segura
de conocimiento, metaheurísticas y optimización bayesiana. Se sintetizan la motivación, el
planteamiento conceptual y los resultados iniciales que orientan esta iniciativa hacia una
computación más sostenible.

1. Motivación

La expansión de los sistemas de inteligencia arti�cial y de procesamiento distribuido ha in-
crementado su impacto energético. Infraestructuras de cómputo masivo, como Apache Spark [1],
ejecutan grandes volúmenes de tareas con un coste proporcional al tamaño de los datos y a la
e�ciencia de sus con�guraciones. La búsqueda de una IA verde [2] exige mecanismos capaces de
adaptar estos sistemas de forma autónoma y sostenible, optimizando recursos y aprovechando
conocimiento previo para evitar evaluaciones redundantes.

2. Planteamiento del problema

La con�guración de aplicaciones distribuidas involucra numerosos parámetros interdepen-
dientes (paralelismo, particionado, memoria, etc.), que generan un espacio de búsqueda comple-
jo, no lineal y con múltiples óptimos locales. Una exploración manual o exhaustiva del espacio
de soluciones en busca de con�guraciones óptimas resulta ine�ciente e inviable. Además, la
variabilidad de cargas y escalas de entrada requiere una optimización continua y energética-
mente consciente, capaz de aprender de ejecuciones previas mediante transferencia segura de
conocimiento.

3. Objetivo y propuesta conceptual

El objetivo es diseñar un sistema de optimización continua en Spark, basado en un bi-criterio
(TR) que minimice el producto geométrico ponderado del tiempo de ejecución y los recursos
hardware utilizados:

TR = T β R 1−β , (1)

donde T es el tiempo de ejecución y R la agregación de recursos físicos (CPU y memoria).
El parámetro β permite ajustar la prioridad entre rendimiento y e�ciencia según el contexto.
Nuestra propuesta combina tres módulos interdependientes:
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Transferencia segura de conocimiento: reutilización de ejecuciones previas mediante
descriptores de carga y criterios de similitud [3, 4];

Metaheurísticas adaptativas: exploración local guiada por estabilidad y diversi�cación
segura mediante Iterated Local Search�Tabu Search [5];

Optimización bayesiana: selección inteligente de con�guraciones bajo presupuestos li-
mitados de evaluación [6].

El sistema se actualiza de forma incremental, integrándose en los ciclos periódicos de ejecución
y promoviendo con�guraciones más e�cientes y sostenibles.

4. Resultados experimentales

Las pruebas sobre cargas heterogéneas y distintos volúmenes de datos mostraron mejoras
consistentes respecto a los enfoques convencionales. El método híbrido alcanzó convergencias
más estables y rápidas, reduciendo reevaluaciones costosas. En conjunto, se observaron descensos
simultáneos del tiempo de ejecución y del uso de recursos, traduciéndose en menor energía
estimada sin pérdida de rendimiento.

5. Conclusión

Esta iniciativa aplica los principios de la IA verde a la optimización automática de paráme-
tros en sistemas distribuidos. El marco híbrido propuesto equilibra rendimiento y sostenibilidad
mediante aprendizaje por transferencia seguro y optimización metaheurística�bayesiana de bajo
coste computacional. Los próximos pasos se orientan a validar su impacto energético en entor-
nos reales de cómputo masivo, con el apoyo del Laboratorio de Innovación Aplicada (LIA) de
Minsait (Indra Company), avanzando hacia infraestructuras de computación más sostenibles.
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