
Selección de Caracteŕısticas en GPUs para

Inferir Redes Genéticas de Forma

Energéticamente Eficiente

Jorge González-Domı́nguez, Javier Darriba

Universidade da Coruña
jgonzalezd@udc.es, javier.darriba@udc.es

Abstract

La inferencia de redes genéticas permite comprender procesos celulares complejos. MR-
NET es una herramienta ampliamente utilizada para inferir dichas redes, pero su coste
computacional limita su escalabilidad y eficiencia energética. Este trabajo presenta una
versión paralela de MRNET optimizada para GPUs. Gracias al uso de estas arquitecturas
de memoria compartida y a la libreŕıa Parallel-FST, el algoritmo resultante no solo es más
rápido, sino también más eficiente energéticamente, lo que lo hace adecuado para entornos
de computación sostenible.

1. Introducción

Históricamente, diversas técnicas computacionales han sido desarrolladas para abordar la infer-
encia de redes de regulación genética, las cuales son esenciales para comprender las interacciones
entre genes que definen numerosos procesos biológicos y patológicos. Una de las más desta-
cadas es el método MRNET [4] (Minimum Redundancy Networks), basado en el algoritmo
de selección de caracteŕısticas mRMR [3] (Maximum Relevance Minimum Redundancy), que
tiene como objetivo minimizar la redundancia entre las caracteŕısticas seleccionadas mientras
maximiza su relevancia para las caracteŕısticas objetivo, proporcionando aśı modelos más pre-
cisos y fácilmente interpretables. En este escenario, mRMR consigue trabajar sobre conjuntos
biológicos interpretando los genes como caracteŕısticas. Sin embargo, MRNET se enfrenta a
limitaciones notables en cuanto a eficiencia computacional. La complejidad cúbica de este
método en relación con el número de genes implica que su aplicación en estudios a gran escala
puede ser computacionalmente prohibitiva.

El presente trabajo estudió el uso de implementaciones paralelas de mRMR disponibles
en la libreŕıa Parallel-FST [2] para desarrollar versiones optimizadas de MRNET. Concreta-
mente, nos centramos en las versiones para GPUs, que permiten no solo acelerar la selección
de caracteŕısticas sino hacerlo a un menor coste energético.

2. Implementación paralela

Para llevar a cabo la llamada de la función que implementa el algoritmo mRMR en CUDA de la
biblioteca Parallel-FST es necesario proporcionar cuatro parámetros fundamentales. El primer
parámetro es el número de caracteŕısticas a seleccionar, que en este caso, debido al método
MRNET, corresponde a todas las caracteŕısticas disponibles. El segundo es una instancia de
la clase Dataset, que representa la matriz de caracteŕısticas. Es importante destacar que la
última columna de esta matriz se considera como la clase objetivo. El tercer parámetro es
un vector donde se almacenan los resultados, compuesto por pares que indican el ı́ndice de



la caracteŕıstica y su respectiva puntuación. Finalmente, se requiere una instancia de la clase
Config, la cual permite ajustar varios parámetros como la precisión del resultado, el número
de streams, el número de bloques en la GPU y el número de hilos por bloque, el uso o no de
memoria compartida en la GPU, la activación o desactivación del perfilado en la ejecución y la
GPU a utilizar mediante un ı́ndice. Estos parámetros pueden tener una gran influencia en el
rendimiento [1].

Teniendo esto en cuenta la implementación de MRNET con CUDA consiste en un bucle
principal realizando iteraciones sobre cada caracteŕıstica, considerándola como clase objetivo
de forma secuencial. Este procedimiento se inicia desde la última caracteŕıstica hasta la primera,
intercambiando la columna de la clase objetivo actual por la de la caracteŕıstica seleccionada.
En cada iteración, se actualiza la matriz de caracteŕısticas para que la nueva clase objetivo sea
efectivamente la caracteŕıstica actual, se ejecuta el algoritmo mMRM, se ordenan los resultados
por el ı́ndice de caracteŕıstica y se escribe el resultado en el fichero de salida.

3. Evaluación experimental

Se ha comparado la velocidad de análisis de la herramienta MRNET original con la nueva
versión basada en Parallel-FST ejecutada sobre dos tipos de GPUs de NVIDIA: por un lado
una GPU NVIDIA T41, basada en la arquitectura Turing, y por otro una GPU NVIDIA A1002,
con arquitectura Ampere.

Se ha empleado un conjunto de datos genómico real (GDS1083)3 formado por 1124 genes y
108 muestras. La versión secuencial de MRNET, requirió en una máquina con un Intel Xeon
Ice LAke 23 horas 56 minutos para completar su ejecución. Cabe destacar que este tiempo se
debe principalmente al cálculo en el algoritmo mRMR, ya que sumando el resto de las partes
del programa, como la lectura del fichero de entrada (28 ms) o la discretización de los datos (6
ms), apenas llegan a sumar un par de segundos.

En relación con la implementación en CUDA, se ajustó la configuración en el archivo Config.h
para evaluar diferentes números de streams, precisiones, número de bloques y de hilos por
bloque. Los resultados mostraron que la aceleración respecto a la ejecución secuencial, en el
mejor de los casos, es de 26.5 usando la GPU T4 y de 33.4 con la GPU A100. Esto indica que
la arquitectura Ampere, más moderna y con capacidades superiores, es algo más rápida que la
arquitectura Turing.

References

[1] Bieito Beceiro, Jorge González-Domı́nguez, Laura Morán-Fernández, Verónica Bolón-Canedo, and
Juan Touriño. CUDA Acceleration of MI-based Feature Selection Methods. Journal of Parallel and
Distributed Computing, 190:104901, 2024.

[2] Bieito Beceiro, Jorge González-Domı́nguez, and Juan Touriño. Parallel-FST: A Feature Selection
Library for Multicore Clusters. Journal of Parallel and Distributed Computing, 169:106–116, 2022.

[3] Chris Ding and Hanchuan Peng. Minimum Redundancy Feature Selection from Microarray Gene
Expression Data. Journal of Bioinformatics and Computational Biology, 3(02):185–205, 2005.

[4] Patrick E Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi. Information-Theoretic
Inference of Large Transcriptional Regulatory Networks. EURASIP Journal on Bioinformatics and
Systems Biology, 2007(1):79879, 2007.

1https://www.nvidia.com/es-es/data-center/tesla-t4/
2https://www.nvidia.com/es-es/data-center/a100/
3https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1083

2


	Introducción
	Implementación paralela
	Evaluación experimental

