Seleccion de Caracteristicas en GPUs para
Inferir Redes Genéticas de Forma
Energéticamente Eficiente

Jorge Gonzalez-Dominguez, Javier Darriba

Universidade da Coruna
jgonzalezd@udc.es, javier.darriba@udc.es

Abstract

La inferencia de redes genéticas permite comprender procesos celulares complejos. MR-
NET es una herramienta ampliamente utilizada para inferir dichas redes, pero su coste
computacional limita su escalabilidad y eficiencia energética. Este trabajo presenta una
versién paralela de MRNET optimizada para GPUs. Gracias al uso de estas arquitecturas
de memoria compartida y a la libreria Parallel-FST, el algoritmo resultante no solo es més
rapido, sino también m4s eficiente energéticamente, lo que lo hace adecuado para entornos
de computacién sostenible.

1. Introduccion

Historicamente, diversas técnicas computacionales han sido desarrolladas para abordar la infer-
encia de redes de regulacion genética, las cuales son esenciales para comprender las interacciones
entre genes que definen numerosos procesos biolégicos y patolégicos. Una de las méas desta-
cadas es el método MRNET [4] (Minimum Redundancy Networks), basado en el algoritmo
de seleccién de caracteristicas mRMR [3] (Maximum Relevance Minimum Redundancy), que
tiene como objetivo minimizar la redundancia entre las caracteristicas seleccionadas mientras
maximiza su relevancia para las caracteristicas objetivo, proporcionando asi modelos mas pre-
cisos y facilmente interpretables. En este escenario, mRMR consigue trabajar sobre conjuntos
bioldgicos interpretando los genes como caracteristicas. Sin embargo, MRNET se enfrenta a
limitaciones notables en cuanto a eficiencia computacional. La complejidad ctbica de este
método en relacién con el nimero de genes implica que su aplicacién en estudios a gran escala
puede ser computacionalmente prohibitiva.

El presente trabajo estudié el uso de implementaciones paralelas de mRMR disponibles
en la librerfa Parallel-FST [2] para desarrollar versiones optimizadas de MRNET. Concreta-
mente, nos centramos en las versiones para GPUs, que permiten no solo acelerar la seleccién
de caracteristicas sino hacerlo a un menor coste energético.

2. Implementacién paralela

Para llevar a cabo la llamada de la funcién que implementa el algoritmo mRMR en CUDA de la
biblioteca Parallel-FST es necesario proporcionar cuatro pardmetros fundamentales. El primer
parametro es el nimero de caracteristicas a seleccionar, que en este caso, debido al método
MRNET, corresponde a todas las caracteristicas disponibles. El segundo es una instancia de
la clase Dataset, que representa la matriz de caracteristicas. Es importante destacar que la
dltima columna de esta matriz se considera como la clase objetivo. FEl tercer parametro es
un vector donde se almacenan los resultados, compuesto por pares que indican el indice de



la caracteristica y su respectiva puntuacién. Finalmente, se requiere una instancia de la clase
Config, la cual permite ajustar varios parametros como la precisiéon del resultado, el nimero
de streams, el nimero de bloques en la GPU y el nimero de hilos por bloque, el uso o no de
memoria compartida en la GPU, la activacién o desactivacion del perfilado en la ejecucién y la
GPU a utilizar mediante un indice. Estos parametros pueden tener una gran influencia en el
rendimiento [1].

Teniendo esto en cuenta la implementacién de MRNET con CUDA consiste en un bucle
principal realizando iteraciones sobre cada caracteristica, considerandola como clase objetivo
de forma secuencial. Este procedimiento se inicia desde la tiltima caracteristica hasta la primera,
intercambiando la columna de la clase objetivo actual por la de la caracteristica seleccionada.
En cada iteracién, se actualiza la matriz de caracteristicas para que la nueva clase objetivo sea
efectivamente la caracteristica actual, se ejecuta el algoritmo mMRM, se ordenan los resultados
por el indice de caracteristica y se escribe el resultado en el fichero de salida.

3. Evaluacion experimental

Se ha comparado la velocidad de analisis de la herramienta MRNET original con la nueva
version basada en Parallel-FST ejecutada sobre dos tipos de GPUs de NVIDIA: por un lado
una GPU NVIDIA T4!, basada en la arquitectura Turing, y por otro una GPU NVIDIA A1002,
con arquitectura Ampere.

Se ha empleado un conjunto de datos genémico real (GDS1083)? formado por 1124 genes y
108 muestras. La version secuencial de MRNET, requirié en una méaquina con un Intel Xeon
Ice LAke 23 horas 56 minutos para completar su ejecucién. Cabe destacar que este tiempo se
debe principalmente al célculo en el algoritmo mRMR, ya que sumando el resto de las partes
del programa, como la lectura del fichero de entrada (28 ms) o la discretizacién de los datos (6
ms), apenas llegan a sumar un par de segundos.

En relacién con la implementacién en CUDA, se ajusté la configuracién en el archivo Config.h
para evaluar diferentes nimeros de streams, precisiones, numero de bloques y de hilos por
bloque. Los resultados mostraron que la aceleracién respecto a la ejecucién secuencial, en el
mejor de los casos, es de 26.5 usando la GPU T4 y de 33.4 con la GPU A100. Esto indica que
la arquitectura Ampere, mas moderna y con capacidades superiores, es algo mas rapida que la
arquitectura Turing.

References

[1] Bieito Beceiro, Jorge Gonzélez-Dominguez, Laura Mordn-Ferndndez, Verénica Bolén-Canedo, and
Juan Tourifio. CUDA Acceleration of MI-based Feature Selection Methods. Journal of Parallel and
Distributed Computing, 190:104901, 2024.

[2] Bieito Beceiro, Jorge Gonzalez-Dominguez, and Juan Touriflo. Parallel-FST: A Feature Selection
Library for Multicore Clusters. Journal of Parallel and Distributed Computing, 169:106-116, 2022.

[3] Chris Ding and Hanchuan Peng. Minimum Redundancy Feature Selection from Microarray Gene
Expression Data. Journal of Bioinformatics and Computational Biology, 3(02):185-205, 2005.

[4] Patrick E Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi. Information-Theoretic
Inference of Large Transcriptional Regulatory Networks. EURASIP Journal on Bioinformatics and
Systems Biology, 2007(1):79879, 2007.

Thttps://www.nvidia.com/es-es/data-center /tesla-t4/
2https://www.nvidia.com/es-es/data-center/a100/
3https://www.ncbi.nlm.nih.gov/sites/ GDSbrowser?acc=GDS1083



	Introducción
	Implementación paralela
	Evaluación experimental

