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Abstract

Quantum Computing is a new paradigm of computation that brings in new capabilities
that are not realizable with classical computers. However, harnessing these advantages is no
easy task. One groundbreaking innovation is Quantum Accelerated Monte Carlo (QAMC),
a method that reduces quadratically the number of oracle calls, or shots, required in Monte
Carlo processes. The reduction in the amount of shots is of interest for the optimization
of these processes, which tend to be computationally heavy. In this paper, we present an
approach to a rather well-known problem, the estimation of π, through both classical and
quantum Monte Carlo, only to improve the latter with QAMC. The results show how the
same precision can be obtained with only a fraction of the shots in the original case.

1 Introduction

Quantum Computing (QC) is a computational paradigm based on the postulates of Quantum
Mechanics. This shift from classical computing allows for new ways of both representing and
managing information, but harnessing its computational advantages can be difficult. One of
the most relevant methods for taking advantage of QC is Quantum Accelerated Monte Carlo
(QAMC) [1], which reduces with a quadratic factor the number of shots that are required for
obtaining an estimation through a Monte Carlo process. In this paper, we use this technique
to estimate π, as a showcase of the potential of QC to efficiently solve problems of this nature.

2 Materials and methods

The classical approach of estimating π with Monte Carlo is based on the generation of random
points (x, y) ∈ R2 in a square of side 2r with a inscribed circle of radius r. The relationship
between their areas is AC/AS = πr2/4r2 = π/4, therefore π = 4 × AC/AS ; this proportion
holds when we consider just a quarter of the construction. The generated points are taken as
an approximation to these areas, as every point accounts for the area of the square, and any
point (x, y) such that x2 + y2 ≤ r account for the area of the circle. With these considerations,
π can be estimated as π̃ ≈ 4×points in cirlce/points in square. The more shots of the Monte
Carlo experiment are run, the higher the precision of the estimation of π.

For the QC proposal, the construct is discretized in a grid of n × n parcels. Rather than
generating random points, a pair of coordinates (xp, yp) ∈ {0, 1, . . . , n − 1}2 is generated to
select a random parcel. The parcel accounts for the circle if its center (xpc

, ypc
) holds that

x2pc
+ y2pc

≤ r. Figure 1 illustrates several examples. It should be noted that this discretization
is no different than the discretization caused by the limited precision of floating point numbers
in classical computations.

A quantum routine operates a quantum register |ψ⟩ of n qubits placed in an equal super-
position of all of its 2n states. Each of the states is mapped to a parcel m : |i⟩ → (x, y). When
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Figure 1: Quarter circle used for the estimation of π with r = 1. Left-most figure shows the
area within x2 + y2 ≤ 1; the figures to its right show the discretizations with n = 8, 16 and 32.

measuring the register, a given state is output, and the map determines whether it accounts
for the circle or not. At this point, the Monte Carlo process is the same for the classical and
quantum approaches: a random sampler generator and a classifier.

To take advantage of the optimizations provided by QAMC, a new operator W is appended
to the previous quantum routine. This operator acts on an extra qubit, which is initialized to
state |0⟩, and is set to state |1⟩ when the state of |ψ⟩ corresponds to a parcel that accounts for
the circle with multicontrolled-not operators. This new quantum routine can be passed onto
the QAMC algorithm, and it will output the estimation of π, with quadratically less shots.

3 Results and conclusions

The proposed method has been tested with several experiments, whose conditions and results
are illustrated in Table 1. Each experiment has been performed 100 times, since the probabilistic
nature impels to repeat them and consider their averages.

As expected, the classical and the quantum methods present comparable scaling regarding
the size of the problem, since both approaches are algorithmically equivalent. This is not the
case for the QAMC approach, which yields less shots required for a problem of the same size.

This result showcases the potential for QAMC to optimize real world problems, as long
as there is a way to implement them through quantum circuits. This approach will perform
the same as quantum hardware improves, and therefore sets a step towards the direction of
optimization with Quantum Computing.

Resolution Precision
Approach

Classical Quantum QAMC

4x4
10−1 19 24 7
10−2 488 367 289

16x16
10−1 22 23 3
10−2 437 476 276

Table 1: Average number of shots required by each approach to estimate π up to a given
precision |π − π̃| ∈ {10−1, 10−2} for 4× 4 and 16× 16 grid sizes.
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