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Abstract

Deleterious mutations can accumulate as genetic load in the genome, reducing bio-
logical fitness and compromising the viability of populations and species—an aspect still
poorly explored in plants. Artificial intelligence (AI) offers new opportunities to predict
mutational effects and refine these estimates. We evaluated the performance of classical
and AI-based methods for predicting mutational effects using 12,865 variants from 6,172
protein sequences across 433 plant species and explored the use of embeddings derived from
protein language models (PLMs) to train supervised models. These advances may con-
tribute to a more accurate estimation of genetic load, a key factor for guiding conservation
strategies and the sustainable management of natural resources.

1 Introduction

Genetic load refers to the accumulation of deleterious mutations in the genome that reduces
fitness, an aspect still poorly explored in plants [1]. In small populations, reduced efficacy of
purifying selection allows mildly deleterious mutations to accumulate, increasing the load and
compromising the viability of populations and species. Estimating genetic load is therefore
essential for designing effective conservation strategies, including genomic rescue and managed
gene flow, aimed at maintaining long-term viability. To this end, accurately predicting muta-
tional effects is key to identifying deleterious mutations and estimating the genetic load.

Classical approaches like SIFT [3] rely on sequence evolutionary conservation to infer func-
tional importance. Protein language models (PLMs) like ESM1v [4] learn evolutionary and
structural patterns from large protein databases. Once pretrained, they can predict the impact
of mutations in a zero-shot setting by comparing the likelihood the model assigns to the mutant
versus the wild-type residue. Alternatively, PLMs can extract high-dimensional embeddings
that represent protein properties and can be used in supervised models trained for mutational
effect prediction. In contrast to SIFT, which evaluates mutational effects from position-specific
conservation scores, PLMs take into account the surrounding aminoacid context and capture
how mutations can disrupt sequence dependencies. These AI-based methods remain largely
unexplored in plants, where predictive tools are still limited.

In this work, we compare three approaches to predict mutational effects in plant proteins:
a classical non-AI-method (SIFT), a zero-shot PLM (ESM1v), and a supervised model using
ESM1v embeddings. Employing 12,865 variants from 6,172 proteins of 433 plant species [2], we
evaluate predictive accuracy and environmental impact.

2 Methodology

Performance evaluation was conducted using the corresponding test set (20%). SIFT used
default settings and Viridiplantae-filtered UniRef90 database. The PLM zero-shot approach



used the average predictions from five ESM1v ensemble models. The PLM embedding-based
supervised approach used 1,280-dimensional ESM1v embeddings of the mutated aminoacid
residues as input features for a Support Vector Machine (SVM) trained on the corresponding
training set (80%). All analyses ran on CESGA’s FinisTerrae III HPC system, using 16 CPU
cores for SIFT and an A-100 GPU for ESM1v. Energy use and emissions were estimated with
CodeCarbon v3.0.7, based on hardware usage and regional carbon intensity.

3 Results

The comparative evaluation of the three approaches revealed distinct performance and envi-
ronmental impact (Table 1). The embedding-based supervised approach achieved the highest
f1-score of 0.819 and balanced performance. The classical SIFT method performed moderately
well (f1-score = 0.754) and showed the highest ability to detect deleterious mutations (recall
= 0.872), but at the cost of lower precision of 0.710. In contrast, the ESM1v zero-shot model
prioritizes minimizing false positives, achieving a higher precision of 0.802, but missing true
deleterious mutations (recall = 0.625). Regarding energy consumption, SIFT is the fastest and
most efficient option, with 40× less energy and lower CO2 emission. However, the ESM1v
models require more computation and therefore produce higher emissions, mainly due to the
embedding extraction phase in the case of the supervised approach.

Methods F1-Score Precision Recall Time (s) E (Wh) CO2 (g)
SIFT 0.757 0.710 0.872 76 6.21 1.08
ESM1v zero-shot 0.734 0.802 0.625 2358 255.47 44.47
ESM1v supervised 0.819 0.806 0.835 2013 197.23 34.32
*embedding extraction 1983 193.85 33.74
training 26 3.01 0.52
testing 4 0.37 0.06

Table 1: Comparison of performance. Runtime, energy use and CO2 emissions inferred from
processing a subset of 100 mutations. Best values in bold. *Embedding extraction of both
train and test samples.
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